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Fluid-structure interaction (FSI) problems are important in many engineering applica-
tions and are computationally challenging. FSI is a multi-domain problem involving moving
and deforming solids which are coupled through solid fluid interfaces. Examples of FSI prob-
lems include the modeling of flow-induced vibrations of structures (aircraft, undersea cables,
wind turbines, buildings), shock-structure interactions (blast effects), and many others. F-
SI is an active field of research and there are a wide variety of numerical techniques that
have been developed for simulating problems in this area. These techniques include Eule-
rian, Lagrangian, Arbitrary Lagrangian-Eulerian (ALE), immersed boundary, level-set, in-
terface tracking, and distributed-Lagrange-multiplier/fictitious-domain methods. Numerical
approximations based on finite-element, finite-volume and discontinuous Galerkin methods,
among others, have been developed.

In this research, we are going to consider to develop a gas-kinetic scheme (GKS) for the
FSI problems. The main issue related to the moving mesh method in a physical space is to
construct a flux on a moving mesh interface. Suppose reference frame is a rest frame, and an
interface is moving with velocity ~Ug. In a finite volume scheme, the flux across the interface
can be written as below:

F =

∫
Ω~uk

(~u− ~Ug)fQ(~u)d~u, (1)

where f is the gas distribution function, ~u is the particle velocity, and Q is the moment to
be transported. It is the relative velocity between the particle and interface to determine
particle transport across a cell interface. If ~Ug = 0, the above formulation goes back to
the scheme without mesh movement. The fluxes for macroscopic quantities and distribution
function are given as following,

Fmass = ~n ·

∫
Ω

(~u− ~Ug)fd~u,

Fmomentum = ~n ·

∫
Ω

(~u− ~Ug)~ufd~u,

Fenergy = ~n ·

∫
Ω

(~u− ~Ug)
1

2
~u2fd~u,

1



F~uk
= ~n ·

∫
Ω~uk

(~u− ~Ug)fd~u. (2)

The local analytical solution of the kinetic BGK equation on a moving interface is

f(~x, t, ~u, ξ) =
1

τ

∫ t

0

g(~x′, t′, ~u, ξ)e−(t−t′)/τdt′

+e−t/τf0(~x− (~u− Ug)t), (3)

where ~x′ = ~x − (~u − ~Ug)(t − t′). The initial distribution function f0 can be constructed
through the Chapman-Enskog expansion for the NS solutions around a cell interface. For
the integration of the equilibrium part, the corresponding macroscopic variables W0 are
needed. Consider f0(~x − (~u − Ug)t) at x = 0, t = 0+, the macroscopic quantities can be
determined by conservation constraint,

W0 =

∫
g0ψdΞ =

∫
f0ψdΞ, (4)

where ψ is the conservative moment. Then the equilibrium state and its integration can be
determined. The above flux is defined in a local coordinate, if we want to implement the
flux in global coordinate, a transformation is needed.

In solid domain we are going solve the elastic wave equation on a fixed reference grid.
At a fluid-solid interface, the normal components of the fluid and solid velocities and forces
must match along with the fluid and solid interface. The standard partitioned approach
to fluid-solid interfaces attempts to decouple these two conditions by choosing the interface
velocity to be that of the solid, and the interface force to be that of the fluid. Here we will
develop the fluid-solid interface coupled approximation based on the solution of a fluid-solid
Riemann problem.
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